Thermal scaling laws of the optical Bragg acceleration structure
نویسندگان
چکیده
The temperature distribution and heat flow in the planar optical Bragg acceleration structure, fed by a train of high-power laser pulses, are analyzed. Dynamic analysis of a high-repetition rate train of pulses indicates that the stationary solution is an excellent approximation for the regime of interest. Analytic expressions for the temperature and heat distributions across the acceleration structure are developed. Assuming an accelerating gradient of 1 GV=m and a loss factor similar to that existing in communication optical fibers 1 dB=km tan 10 11 , the temperature increase is less than 1 K and the heat flow is of the order of 1 W=cm2, which is 3 orders of magnitude lower than the known technological limit for heat dissipation. Obviously, using materials with a significantly higher loss tangent may lead to unacceptable temperatures and temperature gradients as well as confinement difficulties and phase mismatch.
منابع مشابه
Electromagnetic forces on the dielectric layers of the planar optical Bragg acceleration structure.
Optical Bragg acceleration structures are waveguides with a vacuum core and dielectric layers as a cladding, designed to guide laser light at the speed-of-light TM mode and accelerate charged particles. In this study, we analyze the electromagnetic forces exerted on the dielectric layers of a planar structure by both the guided laser light and the wake-field of moving charges. The distribution ...
متن کاملOptical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings
Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...
متن کاملDiaphragm Based Fiber Bragg Grating Acceleration Sensor with Temperature Compensation
A novel fiber Bragg grating (FBG) sensing-based acceleration sensor has been proposed to simultaneously decouple and measure temperature and acceleration in real-time. This design applied a diaphragm structure and utilized the axial property of a tightly suspended optical fiber, enabling improvement in its sensitivity and resonant frequency and achieve a low cross-sensitivity. The theoretical v...
متن کاملOptimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications
We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...
متن کاملEffects of Far- and Near-Field Multiple Earthquakes on the RC SDOF Fragility Curves Using Different First Shock Scaling Methods
Typically, to study the effects of consecutive earthquakes, it is necessary to consider definite intensity levels of the first shock. Methods commonly used to define intensity involve scaling the first shock to a specified maximum interstorey drift. In this study the structure’s predefined elastic spectral acceleration caused by the first shock is also considered for scaling. This study aims to...
متن کامل